Choques entre satélites

La posibilidad de un choque entre dos satélites siempre está ahí. El espacio es muy, muy grande y caben muchos satélites. La posibilidad de choques es mínima, teniendo en cuenta que las orbitas están a alturas diferentes y no suelen cruzarse. Bueno, cruzar si, a diferente altura, más bien no suelen intersecar, es decir, se cortan en el mismo punto.

Aún así existen unas distancias de seguridad para evitar estas colisiones, que no solo acaban con los satélites siniestrados, si no que además llenan la orbita de pequeñas “balas” a 27000 km/h que además no tienen control y pueden producir otros accidentes en cadena.

Evitar esto es muy importante, más aún cuando se esta llenando la orbita de miles de satélites (como ya comentamos aquí). Cuando estos satélites acaban su vida útil o fallan, o se quedan sin combustible para maniobrar, quedan en su órbita hasta que caen, con suerte, o se quedan allí para siempre.

Satelite de la constalación Starlink de SpaceX. Se trabaja para evitar los Choques
Satélite Starlink de SpaceX, al fonde se ve un “hermano de éste”. (Spacenews.com)

Todo esto no es nuevo, pero lo que si es nuevo es que una agencia de la importancia de la Agencia Espacial Europea (ESA por sus siglas en inglés), tenga que maniobrar para esquivar un satélite, en este caso de la constalación StarLink de Space X, de la que ya hemos hablado un par de veces (aquí y aquí)

Ttrayectoria de colisión Starlink SpaceX y aeolus ESA. Señalado el potencial punto de choque
Trayectorias y punto de aproximación de ambos satélites. (Spacenews.com)

Según hemos sabido por el portal Spacenews, la ESA ha publicado una serie de twits para comunicar que ha maniobrado un satélite para evitar una colisión. Aunque es muy de película, esto sucede más veces de los que nos creemos.

El afectado ha sido el satélite Aeolus, construido para la observación de la tierra con fines científicos, en especial atmosféricos. El otro artefacto involucrado es, según la ESA, el Starlink 44.

El incidente se ha dado a conocer el 3 de septiembre, aunque el aviso llegó antes. Se puso en conocimiento de SpaceX y ante el aumento de la probabilidad de colisión hasta el umbral de decisión, se decidió hacer la maniobra.

Aunque según citan, la probabilidad de colisión era de 1 entre 50000 en el momento del aviso, esta aumentó hasta 1 entre 1000 y la seguridad es lo primero.

Ni la ESA ni SpaceX han dado más datos al respecto y no sabemos cuánto se han aproximado entre sí. Pero quien si puede darnos datos al respecto es SOCRATES, no el filósofo, si no la Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space (un acrónimo impecable). SOCRATES se dedica a monitorizar los que hay en espacio de modo civil. Seguramente las agencias espaciales tienen sus propios medios, pero este se puede consultar.

Al parecer, según esta web, el máximo acercamiento de ambos fue de 4 km a una velocidad de 14.4 km/s. Según esta web han existido acercamientos más “peliagudos” a tan solo 65 metros…

La constelación Starlink, o la parte que hay en órbita, ya ha alcanzado su altura de servicio, por lo que sus orbitas estarán mejor controladas. En los próximos meses SpaceX va a deorbitar un par de satélites para verificar el funcionamiento de sus motores.

La enseñanza de todo esto es que una alerta se ha tramitado mediante unos correos electrónicos y una maniobra, pero no existen protocolos de comunicación entre empresas y agencias para evitar estos choques y el tráfico de satélites va en aumento.

Cuidado, yo soy pro satélites, no me quejo, es bueno que prolifere la industria espacial, pero es cierto que falta una regulación internacional y una forma de comunicarse. Hay catálogos diferentes para numerar los objetos en órbita, como ejemplos, el USA 240, el COSMOS 1358 o el NORAD 13161. También hay lanzamientos secretos (que se pueden ver fácilmente) y cargas secundarias, es decir, un satélite que viaje junto a otro más grande o un satélite que lanza otro satélite tiempo después, intentando eludir a los aficionados que los detectan y describen sus orbitas.

Otro gran problema son las últimas etapas de los cohetes que se quedan en órbita… Teniendo en cuenta que el 90% de lo que “flota” ahí fuera, son residuos o satélites apagados, no hay a penas control sobre la mayoría de los artefactos peligrosos, y esta cifra irá en aumento.

Cuando recorres 42000 km cada 90 min, acercase a 4 km de otro satélite es mucho. Si pensamos que entre uno y tres vehículos espaciales pueden estar ocupados por astronautas al mismo tiempo en órbita, es un riesgo que no merece la pena tomar.

Mi consejo, esta vez para la comunidad internacional, es crear un punto SIG-SAT de satélites y pagar la tasa para su posterior recogida a cargo de una agencia o empresa privada que cobre por ello, el espacio es infinito, pero el espacio útil de la órbita no, y dentro de poco querremos usarlo como turistas, con algo de seguridad, claro.

Serie “Cómo funciona el cosmos”. Capitulo segundo: Cómo sabemos que el universo se expande

Cómo sabemos que el universo se expande es una pregunta recurrente para las personas que están empezando a entrar en contacto con este mundillo. Para empezar, recordemos que todo esto empieza con la observación de cuerpos lejanos. Edwin Hubble realiza una publicación en 1929 sobre el movimiento de las nebulosas, concluyendo que la mayoría de ellas presentaban corrimientos al rojo. ¿Qué significa esto?

Antes de explicar que es el corrimiento al rojo debemos recordar el efecto Doppler. Todos hemos oído, y nos lo han explicado en el cole, que las sirenas de las ambulancias se oyen de forma distinta cuando se acercan y cuando se alejan. Este efecto se produce porque el sonido es una onda. Si la onda es amplia el sonido es grave, si es estrecha, el sonido es agudo. Piensa en la moto que viene lejos en una noche de verano con la ventana abierta. El sonido se acerca, es agudo, cuando se aleja se torna grave de repente. El ruido del motor siempre es el mismo pero el primer sonido tiene ondas de mucha frecuencia (si las pintamos son estrechas) y al alejarse son ondas de poca frecuencia (anchas).

¿Cómo es posible? Es sencillo, el sonido tiene una velocidad determinada de propagación (vamos a llamarla pequeña en comparación con otras cosas). Un coche, una moto, puede fácilmente ir al 10 o 15% de esta velocidad (si el conductor es algo más irresponsable, incluso al 20%). La onda se propaga más rápido, pero empieza a propagarse cuando el cuerpo se está moviendo. Si la onda y el cuerpo se acercan a nosotros, el emisor está “empujando la onda” al emitirla, por lo que la comprime (se hace estrecha), por lo tanto, se agudiza y pasa lo contrario si se aleja, la estira y se agrava.

Con la luz pasa lo mismo, salvo que la luz sí que se expande en el espacio vacío. La luz es una onda electromagnética y como onda “padece” igual el efecto Doppler. Por supuesto, en el caso de la velocidad de la luz, debemos observar cuerpos muy rápidos para notar este efecto. En el Cosmos todo es muy, muy (todos los muis que quieras decir serán pocos) grande y todo ocurre a escalas que cuesta imaginar. El movimiento de por ejemplo entre dos galaxias, como la Vía Láctea y Andrómeda es de 300 km/s referida al Sol, esto es que depende del punto en el que está el sol, pero es en cualquier caso enorme. Aun así, su corrimiento al rojo es de -0,001001 que parece un valor pequeño.

Al mirar a objetos lejanos, muy lejanos, observamos que, en general, este corrimiento al rojo es mayor. El valor del corrimiento al rojo de la galaxia EGS8p7, la más lejana encontrada hasta ahora, dada a conocer en la revista Astrophysical Journal Letter, es de 8,68.

Cuando Georges Lemaître publicó en 1927 la teoría, su estudio se basaba en las leyes de Einstein y en observaciones de varios astrónomos. Su trabajo pasó desapercibido. Poco después, en 1929, Edwin Hubble publicó su teoría apoyada en las observaciones que había realizado desde el observatorio de Monte Wilson. Aquí fue donde, con un estudio de objetos lejanos (en aquella época objetos de fuera de la Vía Láctea), Hubble establece la relación entre la distancia de un objeto y el corrimiento al rojo.

Las observaciones decían que cuanto más lejos estaba un objeto, mayor corrimiento al rojo tiene. Esto demuestra, no que los objetos se alejan entre si, ya que ese caso todos tendrían corrimientos al rojo similares o dependientes de su dirección de movimiento a cualquier distancia. Sin embargo, que esté estrechamente relacionada la distancia con el valor de corrimiento al rojo, demuestra que es el universo el que se expande, no las galaxias las que se mueven alejándose. Es la conocida como ley de Hubble–Lemaître.

Ahora podemos distinguir dos valores de movimiento de los objetos, el movimiento propio de estrellas y galaxias entre sí, y el de la expansión del universo. Hay que destacar que la expansión del universo no significa que las galaxias se muevan hacia afuera para llenar un espacio vacío, no. Esto significa que es el propio espacio vacío el que crece y en su expansión arrastra su contenido haciendo que se alejen unos objetos de otros.

De forma similar podríamos pensar en una camiseta que se va estirando con el uso, el dibujo de la misma crece en igual proporción, pero visto desde dentro, dos dibujos de la misma camiseta parecerían alejarse uno del otro, cuando lo que pasa es que el espacio en el que están contenidos está creciendo, dándose de sí. Si estos dibujos están más separados, parece que se alejan más, pues hay más estiramiento (no más tela) entre ambos, la tela se está estirando. El espacio-tiempo se está estirando.

Esta teoría, ya demostrada, es el principal aval para la teoría del Big Bang como origen del universo.

Por otro lado, se ha trabajado mucho en calcular esa expansión. Lo que se denomina H0 o constante de Hubble, es el valor de proporcionalidad que determina cuanto se alejan unos objetos de otros en función de su distancia. Este valor se ha medido mediante observaciones y, más recientemente, mediante satélites como el Planck. El valor más reciente publicado es de 64 (km/s)/Mpc. Léase, que el universo se expande a una velocidad de 64 kilómetros por segundo de velocidad por cada Mega Parsec de distancia. Un parsec es la “abreviatura” de paralaje de un segundo de arco.

Si te aclaras mejor en años luz, es el equivalente a decir que el universo se expande a una velocidad de 19,62 km/s por cada millón de años luz de distancia. Es decir, que a una distancia de 2.5 millones de años luz, donde está la galaxia Andrómeda, el universo, se expande a 49.05 km/s.

Mi consejo, mira las galaxias cercanas al telescopio, son producto del momento en que vivimos. No vamos a notarlo en lo que duren nuestras vidas, pero estás mirando algo vivo y cambiante.

Cómo vemos el universo (tipos de astronomía)

Observatorio Spitzer de la NASA

Cuando hacemos un evento de astroturismo empiezo contando lo que vamos a hacer, parece obvio, mirar las estrellas a través del telescopio, pero esta afirmación debe puntualizarse. Solo hace unas pocas décadas hemos empezado a ir a objetos más cercanos para recopilar datos, todo lo que hemos hecho antes de eso y la inmensa mayoría de los que hacemos ahora es esperar a que sus señales nos lleguen y estudiarlas. La astronomía es un tipo de ciencia diferente ya que no interactúas con el objeto a estudiar, no lo metes en el laboratorio y le haces pruebas, todo lo que podemos hacer es mirar. Sentarse y mirar lo que nos llega.

El primer contacto con el cielo nocturno lo hacemos por la vista, es lo que llevamos haciendo no se sabe el tiempo y, gracias al telescopio, desde 1610. Pero la luz visible es una pequeña parte de lo que nos llega. Solo hay que saber mirar.

Continuar leyendo “Cómo vemos el universo (tipos de astronomía)”