Serie “Cómo funciona el cosmos”. Capitulo tercero Órbitas de Hohman

En la primera entrada de esta serie hablábamos sobre estar en órbita. Todos nuestros viajes espaciales empiezan ahí, da igual si nos quedamos en orbita o, en el mismo impulso alcanzamos la orbita y seguimos a otro planeta o la luna.

Para hacerlo todo más sencillos, nos quedaremos en el sistema Tierra-Luna. Imaginemos que queremos ir a la luna. No “apuntamos”, disparamos un misil de 3000Tn y listo… no es tan sencillo.

Para empezar, debemos recordar que no flotamos en el espacio, estamos en orbita circular (circular por simplificar). Si encendemos el motor de la nave, la órbita se convertirá en una elipse. El punto más cercano será de donde partimos y el punto más lejano es donde queremos llegar.

Veámonoslo en la imagen inferior:

Órbitas de Hohman

Archivo:Hohmann transfer orbit.svg – Wikipedia, la enciclopedia libre

Estamos en orbita en la tierra (línea verde). Para ir a la luna, teneos que cambiar la forma de la órbita, con un impulso la convertimos en la amarilla. Hay que acelerar lo justo para que el máximo llegue al punto de destino. Si no hacemos nada más, tras pasar por la luna, volveríamos a casa (Trayectoria de retorno libre, ya hablaremos más sobre ello). Pero como lo que queremos es quedarnos debemos volver a encender los motores. En el dibujo no esta la luna, asique lo que hace es volver a acelerar para mantener la orbita roja. Si en lugar de “subir la órbita”, queremos quedarnos en la órbita de la luna, lo que debemos hacer en este punto es “frenar” para que nos atrape la gravedad de la luna en este caso:


W. David Woods. “How Apollo flew to the Moon”

Tras la pequeña orbita alrededor de la tierra (Earth), alcanzamos el punto de impulso TLI (¡al otro lado de la Tierra!), dejamos la óribita inicial para entrar en una órbita que llega hasta la Luna, después el punto de frenada LOI (al otro lado de la Luna) y lo que más me impresiona, las posiciones de la Tierra y Luna en el momento del lanzamiento y de la llegada.

Lo mejor de todo es que “disparan” no donde está la Luna, si no donde va a estar… ¡3 días después!

Si la luna no estuviese ahí y su gravedad no capturase la nave, vemos la trayectoria de vuelta en discontinua, en este caso no hace falta ningún impulso extra, solo frenar al llegar a casa para no volver a irnos tan lejos.

En el caso de abajo vemos que no frenamos y la gravedad de la luna no retiene la nave.


W. David Woods. “How Apollo flew to the Moon”

Esta mecánica es aplicable a cualesquiera de los cuerpos, normalmente la tierra y el destino, pero se puede complicar tanto como queramos e ir viajando de cuerpo en cuerpo del sistema solar, como las Voyager en su día.

Aunque hay órbitas más “estrechas” y por lo tanto más directas, requieren de más velocidad y por lo tanto de más energía. Las órbitas de Hohman, son las de menor energía, por lo que si no tenemos prisa, son las más interesantes para nuestro viaje. Esta es una pequeña aproximación a los que es la mecánica orbital, o como vamos de un sitio a otro en el espacio.

Mi consejo, cuando veas películas en la que las naves luchan entre sí con movimientos propios de los aviones, ya sabes que no es así como se mueven realmente, desconfía de Hollywood.

Interceptor de meteoritos

Una de las cosas más interesantes de la inteligencia es la capacidad de estudiar el pasado, escribirlo con las pistas que nos deja el tiempo y tener la capacidad de previsión para el futuro. Nosotros, como especie inteligente, tenemos estas capacidades.

Sabemos que ha habido al menos 5 extinciones masivas a lo largo de la historia, algunas han acabado con más del 90% de los seres vivos del planeta en ese momento. Ha pasado y volverá a pasar. El tiempo es algo muy subjetivo, nuestra vida es a penas un suspiro en tiempo cósmico, y todo nos parece muy estable, pero no lo es.

Los volcanes, cambios del clima o grandes meteoritos, son fenómenos que alteran en poco tiempo el entorno, provocando desequilibrios en la naturaleza y las extinciones masivas. Organismos perfectamente preparados para su entorno, dejan de estarlo. El entorno ha cambiado.

Poco podemos hacer, más que saber que va a pasar, con nuestra inteligencia y tecnología, salvo para una de esas amenazas. La caída de un meteorito.

Si vemos los números, la probabilidad es pequeñas ¿por qué preocuparse? La probabilidad hoy es pequeña, pero en tiempo cósmico es del 100%. Es seguro que caerá un meteorito devastador, lo que no sabemos es cuando. Siendo conscientes de ello, muchas agencias espaciales estudian los NEAs (Near Earth Asteroids) que son aquellos que se aproximan a la tierra y cuyas órbitas están entre 0,7 y 1,3 veces la distancia al Sol. Muchos de ellos se mueven cruzando la orbita de la tierra. Su número es desconocido, pero se conocen 1.000 con diámetros de más de 30 km. Si bajamos el diámetro a 1000 metros, puede haber unos 20.000. Cuanto más pequeños son, más hay, y más difícil es encontrarlos y seguirlos. Aquellos que se acercan a menos de 0.05 UA o 7.5 millones de kilómetros, son los asteroides potencialmente peligroso o PHA (siglas en inglés de potentially hazardous asteroid)

Ilustración de un meteorito acercandose a la tierra.
La caida de un meteorito es una de las catastrofes que podemos evitar, con planificación y tiempo.

Hay otro problema, los que no conocemos. Hay objetos que nos visitan cada 1000, 2000, o 20000 años, los cometas o los asteroides de periodo largo y que no sabemos que existen porque, desde que tenemos registros, no han pasado ni están catalogados.

Esto se sabe desde hace tiempo y cada año de descubren y catalogan más objetos potencialmente peligrosos, sin embargo, aunque tenemos la tecnología, no existe un plan consistente para rechazar un objeto peligroso. En las películas catastrofistas que hemos visto, montan rápidamente una expedición para salvar la tierra, pero esto no es algo que se pueda hacer por la fuerza bruta y en poco tiempo.

Sin embargo, esto ha cambiado. Del 11 al 13 de septiembre, se reunieron en Roma más de 130 científicos de la NASA y la ESA para poner en marcha el proyecto HERA, que es una misión para probar desviar un asteroide mediante el impacto de una sonda.

Hay varios métodos para cambiar la trayectoria de un asteroide, todos requieren tiempo, ya que la energía para poder desviarlo a, digamos, la distancia de la luna es mucha. Sin embargo, moverlo un centímetro, cuando esta muy lejos, hará que se desvíe lo suficiente para cuando llegue a la tierra.

Los métodos, aunque te suenen muy descabellados son, por ejemplo, desviarlo mediante un pequeño empujón, o impacto. Desviarlo mediante la atracción gravitatoria de una sonda su alrededor, que irá corrigiendo su posición para moverlo… muy muy muy muy poquito. Otro método es usar el efecto Yarkovsky, y este método es la bomba.

Resulta que el ingeniero polaco Ivan Osipovich Yarkovsky  (1844–1902) calculó que si un cuerpo pequeño, hasta unos 10 km, no es uniforme en su superficie, hay unas partes que absorben y desprenden más energía procedente de la luz del sol que otras. Al emitir esa energía, se crea un desequilibrio en la emisión, algo así como un pequeño propulsor que se recarga cuando mira al sol y se descarga en la sombra… asique al final, la trayectoria se modifica por este pequeño empuje. ¿Y como usamos eso en nuestro beneficio? Fácil, pintando un asteroide con los colores que nos interese, eso sí, muuuucho tiempo antes de que llegue, recordemos que el empuje es muy pequeño y necesitamos tiempo. Lo malo, hay que ir allí con mucha pintura, a más pintura, más combustible.

Ilustración del efecto Yarkovsky
Efecto Yarkovsky. Wikipedia

La conclusión es que necesitamos conocer con gran exactitud la órbita de cada objeto, así podremos anticipar los acercamientos y trabajar durante meses o años para poder desplazar el objeto lo justo para que evitar la colisión. El otro problema es tener preparada una misión espacial y no perder la oportunidad de desviar el objeto peligroso.

Mientras escribía estas líneas se ha hecho público, según publica Daniel Marín en Eureka, que la nasa ha aprobado una misión para buscar asteroides potencialmente peligrosos (PHA) y NEAs. La NASA lanzará esta sonda al punto de Lagrange L1 y esperan detectar el 90% de los objetos de más de 140 metros.

Telescopio de infrarrojos NEOSM de la NASA
Telescopio Infrarrojo NEOSM. NASA

Esperemos que sea un éxito y tengamos nuestro entorno algo más controlado.

Serie Hazañas en el cosmos. Capítulo primero: Gagarin

El 12 de abril de 1961 a las 07:55 UTC, despegaba de Baikonur la Vostok-1 (Восто́к en ruso, Este, como el punto cardinal, en español). La Vostok era la primera nave espacial tripulada por un hombre puesta en órbita. El afortunado humano, subido a hombros de gigantes, que miró la tierra desde fuera por primera vez fue Yuri Alekseyevich Gagarin (Ю́рий Алексе́евич Гага́рин). Nuestro amigo Yura, en el primer vuelo tripulado al espacio, ya sufrió los contratiempos de hacer algo que no se había hecho hasta entonces.

Yuri Gararin en el traje de presión. (pngimg.com)

La nave había sido probada en varias ocasiones, incluso con animales vivos que habían vuelto del espacio. Yura, a pesar de la preparación, no tenía mucho que hacer. Los soviéticos habían automatizado la nave de forma que el piloto solo tendría que coger los mandos en caso de fallo del sistema (el panel de control estaba bloqueado y Yura llevaba un sobre cerrado con la clave de desbloqueo)

La Vostok 1 era una nave de dos partes, la esfera, o módulo de descenso y el cilindro o módulo de instrumentación.
Vostok spacecraft.jpg – Wikimedia Commons

El vuelo fue “corto”. 1 hora y 48 minutos, una órbita a la tierra. 169 km de altura mínima y 327 de máxima. A 169 km de altura existe rozamiento con la atmosfera (y mucho más arriba también), no estamos completamente en el vacío del espacio.

La órbita se había planificado de forma que el decaimiento (esto es ir cayendo poco a poco debido al rozamiento con la atmosfera) produjese una reentrada en 10 días (de ahí la importancia del rozamiento que comentábamos antes), tiempo que aguantaría el sistema de soporte vital de la nave, pero la órbita alcanzada finalmente lo hubiese retrasado a 20 días, por lo que, si los motores no hubiesen encendido, la reentrada de «emergencia» que debería haber sido un mecanismo de seguridad, no hubiese funcionado y los viveres para 10 días no habrían bastado para llegar a los 20 que hubiese tardado en caer.

Todo el vuelo se desarrolló según lo previsto. La nave se componía de 2 módulos, el modulo de descenso, en que va el piloto, y el módulo de instrumentación, donde están los motores, combustible, baterías… A la hora de volver a casa, la nave debe separarse, pues el modulo de descenso debe ser más ligero para frenarse más con la atmosfera, además de tener una forma definida para esta maniobra. En este caso se trataba de una esfera. La separación se hace con la nave en perpendicular a la dirección de avance, de forma que ambas partes se separen y no colisionen una con la otra en la reentrada.

Y este fue el punto que falló. Los módulos estaban unidos por unos umbilicales para pasar energía, datos y mantener el control desde el módulo de descenso al módulo de instrumentación. La separación no se produjo completamente, uno de los umbilicales no se rompió según lo previsto y ambas naves comenzaron el descenso juntas, unidas, pero no pegadas.

Yuri notó el movimiento irregular y fuertes giros. Transmitió a control que todo iba bien, pues supuso que este contratiempo no era peligroso para el desarrollo de la misión. El descenso continuó hasta que el calor de la reentrada, por encima de los 1000 ºC fundió el umbilical separando ambas partes cuando estaba encima de Egipto. A pesar de las 8-10 g (8 a 10 veces su propio peso) que soportó, Yuri no perdió la consciencia.

A 2500 metros de altura, Yuri se eyecta de la cápsula, terminando el descenso en paracaídas. En aquel momento se consideraba más seguro hacerlo así en vez de llegar al suelo dentro de la cápsula.

Yuri se convierte, oficialmente, en el primer hombre en salir al espacio, y volver, por los pelos, para contarlo.

Existe una película rusa, “Gagarin, el primero en el espacio” que refleja este vuelo de forma muy cuidada. La película no escatima en efectos especiales. Si podéis verla en ruso subtitulada, mejor.

Como anécdota, Yuri, justo antes de la ignición, dijo Поехали! (Poyejali!, o ¡vámonos!). Desde entonces, Poyejali es una de las formas de brindar que tienen los rusos.

Cada 12 de abril se celebra el día de la cosmonáutica o la Noche de Yuri en conmemoración de este vuelo. Es una fecha acordada por las Naciones Unidas y siempre se hacen actividades relacionadas con el mundo de la cosmonáutica.

Mi consejo, no te lo pierdas si tienes ocasión de asistir.

Serie “Cómo funciona el cosmos”. Capitulo segundo: Cómo sabemos que el universo se expande

Cómo sabemos que el universo se expande es una pregunta recurrente para las personas que están empezando a entrar en contacto con este mundillo. Para empezar, recordemos que todo esto empieza con la observación de cuerpos lejanos. Edwin Hubble realiza una publicación en 1929 sobre el movimiento de las nebulosas, concluyendo que la mayoría de ellas presentaban corrimientos al rojo. ¿Qué significa esto?

Antes de explicar que es el corrimiento al rojo debemos recordar el efecto Doppler. Todos hemos oído, y nos lo han explicado en el cole, que las sirenas de las ambulancias se oyen de forma distinta cuando se acercan y cuando se alejan. Este efecto se produce porque el sonido es una onda. Si la onda es amplia el sonido es grave, si es estrecha, el sonido es agudo. Piensa en la moto que viene lejos en una noche de verano con la ventana abierta. El sonido se acerca, es agudo, cuando se aleja se torna grave de repente. El ruido del motor siempre es el mismo pero el primer sonido tiene ondas de mucha frecuencia (si las pintamos son estrechas) y al alejarse son ondas de poca frecuencia (anchas).

¿Cómo es posible? Es sencillo, el sonido tiene una velocidad determinada de propagación (vamos a llamarla pequeña en comparación con otras cosas). Un coche, una moto, puede fácilmente ir al 10 o 15% de esta velocidad (si el conductor es algo más irresponsable, incluso al 20%). La onda se propaga más rápido, pero empieza a propagarse cuando el cuerpo se está moviendo. Si la onda y el cuerpo se acercan a nosotros, el emisor está “empujando la onda” al emitirla, por lo que la comprime (se hace estrecha), por lo tanto, se agudiza y pasa lo contrario si se aleja, la estira y se agrava.

Con la luz pasa lo mismo, salvo que la luz sí que se expande en el espacio vacío. La luz es una onda electromagnética y como onda “padece” igual el efecto Doppler. Por supuesto, en el caso de la velocidad de la luz, debemos observar cuerpos muy rápidos para notar este efecto. En el Cosmos todo es muy, muy (todos los muis que quieras decir serán pocos) grande y todo ocurre a escalas que cuesta imaginar. El movimiento de por ejemplo entre dos galaxias, como la Vía Láctea y Andrómeda es de 300 km/s referida al Sol, esto es que depende del punto en el que está el sol, pero es en cualquier caso enorme. Aun así, su corrimiento al rojo es de -0,001001 que parece un valor pequeño.

Al mirar a objetos lejanos, muy lejanos, observamos que, en general, este corrimiento al rojo es mayor. El valor del corrimiento al rojo de la galaxia EGS8p7, la más lejana encontrada hasta ahora, dada a conocer en la revista Astrophysical Journal Letter, es de 8,68.

Cuando Georges Lemaître publicó en 1927 la teoría, su estudio se basaba en las leyes de Einstein y en observaciones de varios astrónomos. Su trabajo pasó desapercibido. Poco después, en 1929, Edwin Hubble publicó su teoría apoyada en las observaciones que había realizado desde el observatorio de Monte Wilson. Aquí fue donde, con un estudio de objetos lejanos (en aquella época objetos de fuera de la Vía Láctea), Hubble establece la relación entre la distancia de un objeto y el corrimiento al rojo.

Las observaciones decían que cuanto más lejos estaba un objeto, mayor corrimiento al rojo tiene. Esto demuestra, no que los objetos se alejan entre si, ya que ese caso todos tendrían corrimientos al rojo similares o dependientes de su dirección de movimiento a cualquier distancia. Sin embargo, que esté estrechamente relacionada la distancia con el valor de corrimiento al rojo, demuestra que es el universo el que se expande, no las galaxias las que se mueven alejándose. Es la conocida como ley de Hubble–Lemaître.

Ahora podemos distinguir dos valores de movimiento de los objetos, el movimiento propio de estrellas y galaxias entre sí, y el de la expansión del universo. Hay que destacar que la expansión del universo no significa que las galaxias se muevan hacia afuera para llenar un espacio vacío, no. Esto significa que es el propio espacio vacío el que crece y en su expansión arrastra su contenido haciendo que se alejen unos objetos de otros.

De forma similar podríamos pensar en una camiseta que se va estirando con el uso, el dibujo de la misma crece en igual proporción, pero visto desde dentro, dos dibujos de la misma camiseta parecerían alejarse uno del otro, cuando lo que pasa es que el espacio en el que están contenidos está creciendo, dándose de sí. Si estos dibujos están más separados, parece que se alejan más, pues hay más estiramiento (no más tela) entre ambos, la tela se está estirando. El espacio-tiempo se está estirando.

Esta teoría, ya demostrada, es el principal aval para la teoría del Big Bang como origen del universo.

Por otro lado, se ha trabajado mucho en calcular esa expansión. Lo que se denomina H0 o constante de Hubble, es el valor de proporcionalidad que determina cuanto se alejan unos objetos de otros en función de su distancia. Este valor se ha medido mediante observaciones y, más recientemente, mediante satélites como el Planck. El valor más reciente publicado es de 64 (km/s)/Mpc. Léase, que el universo se expande a una velocidad de 64 kilómetros por segundo de velocidad por cada Mega Parsec de distancia. Un parsec es la “abreviatura” de paralaje de un segundo de arco.

Si te aclaras mejor en años luz, es el equivalente a decir que el universo se expande a una velocidad de 19,62 km/s por cada millón de años luz de distancia. Es decir, que a una distancia de 2.5 millones de años luz, donde está la galaxia Andrómeda, el universo, se expande a 49.05 km/s.

Mi consejo, mira las galaxias cercanas al telescopio, son producto del momento en que vivimos. No vamos a notarlo en lo que duren nuestras vidas, pero estás mirando algo vivo y cambiante.

Cómo vemos el universo (tipos de astronomía)

Cuando hacemos un evento de astroturismo empiezo contando lo que vamos a hacer, parece obvio, mirar las estrellas a través del telescopio, pero esta afirmación debe puntualizarse. Solo hace unas pocas décadas hemos empezado a ir a objetos más cercanos para recopilar datos, todo lo que hemos hecho antes de eso y la inmensa mayoría de los que hacemos ahora es esperar a que sus señales nos lleguen y estudiarlas. La astronomía es un tipo de ciencia diferente ya que no interactúas con el objeto a estudiar, no lo metes en el laboratorio y le haces pruebas, todo lo que podemos hacer es mirar. Sentarse y mirar lo que nos llega.

El primer contacto con el cielo nocturno lo hacemos por la vista, es lo que llevamos haciendo no se sabe el tiempo y, gracias al telescopio, desde 1610. Pero la luz visible es una pequeña parte de lo que nos llega. Solo hay que saber mirar.

Espectro electromarnetico. Zona visible resaltada
Espectro electromagnetico. La luz visible es una pequeña parte.

Como vemos en la imagen anterior, la parte visible es muy pequeña comparado con todo el espectro. Tal vez, visto en forma de onda entiendas mejor la diferencia entre la luz y los rayos X, que son parte de lo mismo:

Longitudes de onda
Distintas longitudes de onda del espectro electromagnetico

Cuanto más cerrada es la onda, es decir, cuando aumenta su frecuencia, es más energético, por eso una sobre exposición a los rayos x hace mucha pupa y cuando nos enfrentamos la luz del sol, nos quemamos pasado un rato, pero vivimos rodeados de ondas de radio, y no nos enteramos.

Pero bueno, todo es física, vamos al pastel. De todas las ondas que llegan, vemos (redundando un poco) las visibles, y con el telescopio las amplificamos. Solo mejoramos lo que la naturaleza nos ha dado, la vista, hasta que en 1937, se pone en marcha el primer radiotelescopio (casero en el patio de Grote Reber) y, et voila!, tenemos una foto diferente del universo. Lo bueno es que podemos ajustar la frecuencia a la que “vemos”. Bueno es mas complicado, cada parte del espectro, necesita un aparato adaptado para poder registrarlo y convertirlo a imagen visible.

El esquema de bajo corresponde al telescopio Chandra, que capta rayos x. Vemos que su construcción difiere del típico tubo de telescopio óptico:

Telescopio Candra
Esquema constructivo del telescopio de rayos x Chandra

El espectro visible, lo que vemos, es una pequeña parte del espectro electromagnético. Las ondas de radio, que sí, son ondas como las que llegan al aparato radio y que emiten los centros de galaxias, pulsares y remanentes de supernovas. Si te preguntas si puedes captarlas con tu aparato de radio, la respuesta es sí. El ruido de radio que oyes cuando no sintonizas nada es ruido de fondo, de aparatos cercanos, ruidos atmosféricos e incluso remanente del Big Bang. Si no llegase nada al aparato, no oirías nada. Los “anisillos” de la tele y la estática de la radio son ruido porque no son algo interpretable por nuestros aparatos. Abajo una antena de radioastronomía.

Antena de radioastronomia
Antena Aries en el centro astronómico de Yebes (Guadalajara, España).

Al ver la antena anterior, casi todos pensamos en las parabólicas de la tele por satélite. El principio es el mismo, la parabólica de la tele apunta a un satélite que manda señales de radio (y televisión). Nuestra antena apunta al espacio profundo y capta ondas de radio del cosmos.

Los telescopios de microondas tienen un aspecto parecido por fuera, al fin y al cabo detectan ondas cercanas a las de radio, son grandes platos parabólicos. En este caso trabajan en el fondo de microondas que es la radiación remanente del big bang y que llena todo el universo.

Los telescopios de infrarrojos son más parecidos al clásico telescopio óptico, solo que el sensor que capta la imagen esta especializado en el infrarrojo (usualmente los telescopios ópticos como el Hubble pueden ir hasta el infrarrojo cercano y el ultravioleta). Estos telescopios son candidatos idóneos para estar en orbita ya que funcionan mejor a bajas temperaturas, recordemos que el infrarrojo es una emisión que se debe a la temperatura del cuerpo que lo emite, cuanto más frio esté el sensor, mayor sensibilidad se consigue. Además la atmosfera absorbe mucho infrarrojo, por lo que no llega la misma señal a la superficie de la tierra que a la órbita.

Observatorio Spitzer de la NASA
Composición artística del SST (Spitzer Space Telescope, NASA)

Uno de los más curiosos es el (no se le puede llamar telescopio) observatorio de rayos gamma.

Los rayos gamma vienen del cosmos al igual que el resto de radiaciones, pero detectarlas requiere un proceso diferente. Lo que veis en la imagen de abajo son depósitos de agua, dentro hay fotodetectores (que además multiplican la señal de luz) que detectan emisiones lumínicas que se producen por la interacción magnética de las partículas cargadas de los rayos gamma (lo que producen es emisión de luz de Cherenkov).

Lo que pasa es que el rayo gamma pasa por el agua de los contenedores. Esta radiación interactúa magnéticamente con las moléculas. Al despolarizarse, las moléculas, emiten luz azulada conocida como radiación de Cherenkov. El detector, lo que hace es captar esta luz.

Observatorio de rayos gamma:

Observatorio de rayos Gamma
El Observatorio HAWC, compuesto de 300 detectores de agua Cherenkov.

Y después de tanto cacharro mirando al mismo sitio, tenemos una serie de imágenes. Todo se puede traducir a imágenes visibles para nosotros. Los diferentes equipos, resaltan aspectos distintos de un mismo cuerpo, la luz, la temperatura, la velocidad, el magnetismo…

Aquí podemos ver la diferencia y la importancia de tener equipos tan distintos. La galaxia de Andrómeda vista con diferentes equipos:

Diferentes imagenes de M31
Image credit: Multiwavelength images of M31, via the Planck mission team; ESA / NASA.

Siempre he dicho que cada tipo de observatorio es una forma alternativa de ver las cosas. Es como si viésemos en blanco y negro, después en color, después en 3D, en holograma… y aún nos queda lo mejor.  La primera observación de ondas gravitatorias se logró el 14 de septiembre de 2015. Esto es nuevo porque ya no observamos el espectro electromagnético. Esto es como añadir sonido a nuestra película, es un tipo totalmente nuevo de astronomía, pero esto es harina de otra entrada del blog.

Mi consejo, cuando estés buscando tu emisora en la radio, no desesperes, lo que estas oyendo es en parte el Cosmos, estás haciendo radioastronomía.