Interceptor de meteoritos

Una de las cosas más interesantes de la inteligencia es la capacidad de estudiar el pasado, escribirlo con las pistas que nos deja el tiempo y tener la capacidad de previsión para el futuro. Nosotros, como especie inteligente, tenemos estas capacidades.

Sabemos que ha habido al menos 5 extinciones masivas a lo largo de la historia, algunas han acabado con más del 90% de los seres vivos del planeta en ese momento. Ha pasado y volverá a pasar. El tiempo es algo muy subjetivo, nuestra vida es a penas un suspiro en tiempo cósmico, y todo nos parece muy estable, pero no lo es.

Los volcanes, cambios del clima o grandes meteoritos, son fenómenos que alteran en poco tiempo el entorno, provocando desequilibrios en la naturaleza y las extinciones masivas. Organismos perfectamente preparados para su entorno, dejan de estarlo. El entorno ha cambiado.

Poco podemos hacer, más que saber que va a pasar, con nuestra inteligencia y tecnología, salvo para una de esas amenazas. La caída de un meteorito.

Si vemos los números, la probabilidad es pequeñas ¿por qué preocuparse? La probabilidad hoy es pequeña, pero en tiempo cósmico es del 100%. Es seguro que caerá un meteorito devastador, lo que no sabemos es cuando. Siendo conscientes de ello, muchas agencias espaciales estudian los NEAs (Near Earth Asteroids) que son aquellos que se aproximan a la tierra y cuyas órbitas están entre 0,7 y 1,3 veces la distancia al Sol. Muchos de ellos se mueven cruzando la orbita de la tierra. Su número es desconocido, pero se conocen 1.000 con diámetros de más de 30 km. Si bajamos el diámetro a 1000 metros, puede haber unos 20.000. Cuanto más pequeños son, más hay, y más difícil es encontrarlos y seguirlos. Aquellos que se acercan a menos de 0.05 UA o 7.5 millones de kilómetros, son los asteroides potencialmente peligroso o PHA (siglas en inglés de potentially hazardous asteroid)

Ilustración de un meteorito acercandose a la tierra.
La caida de un meteorito es una de las catastrofes que podemos evitar, con planificación y tiempo.

Hay otro problema, los que no conocemos. Hay objetos que nos visitan cada 1000, 2000, o 20000 años, los cometas o los asteroides de periodo largo y que no sabemos que existen porque, desde que tenemos registros, no han pasado ni están catalogados.

Esto se sabe desde hace tiempo y cada año de descubren y catalogan más objetos potencialmente peligrosos, sin embargo, aunque tenemos la tecnología, no existe un plan consistente para rechazar un objeto peligroso. En las películas catastrofistas que hemos visto, montan rápidamente una expedición para salvar la tierra, pero esto no es algo que se pueda hacer por la fuerza bruta y en poco tiempo.

Sin embargo, esto ha cambiado. Del 11 al 13 de septiembre, se reunieron en Roma más de 130 científicos de la NASA y la ESA para poner en marcha el proyecto HERA, que es una misión para probar desviar un asteroide mediante el impacto de una sonda.

Hay varios métodos para cambiar la trayectoria de un asteroide, todos requieren tiempo, ya que la energía para poder desviarlo a, digamos, la distancia de la luna es mucha. Sin embargo, moverlo un centímetro, cuando esta muy lejos, hará que se desvíe lo suficiente para cuando llegue a la tierra.

Los métodos, aunque te suenen muy descabellados son, por ejemplo, desviarlo mediante un pequeño empujón, o impacto. Desviarlo mediante la atracción gravitatoria de una sonda su alrededor, que irá corrigiendo su posición para moverlo… muy muy muy muy poquito. Otro método es usar el efecto Yarkovsky, y este método es la bomba.

Resulta que el ingeniero polaco Ivan Osipovich Yarkovsky  (1844–1902) calculó que si un cuerpo pequeño, hasta unos 10 km, no es uniforme en su superficie, hay unas partes que absorben y desprenden más energía procedente de la luz del sol que otras. Al emitir esa energía, se crea un desequilibrio en la emisión, algo así como un pequeño propulsor que se recarga cuando mira al sol y se descarga en la sombra… asique al final, la trayectoria se modifica por este pequeño empuje. ¿Y como usamos eso en nuestro beneficio? Fácil, pintando un asteroide con los colores que nos interese, eso sí, muuuucho tiempo antes de que llegue, recordemos que el empuje es muy pequeño y necesitamos tiempo. Lo malo, hay que ir allí con mucha pintura, a más pintura, más combustible.

Ilustración del efecto Yarkovsky
Efecto Yarkovsky. Wikipedia

La conclusión es que necesitamos conocer con gran exactitud la órbita de cada objeto, así podremos anticipar los acercamientos y trabajar durante meses o años para poder desplazar el objeto lo justo para que evitar la colisión. El otro problema es tener preparada una misión espacial y no perder la oportunidad de desviar el objeto peligroso.

Mientras escribía estas líneas se ha hecho público, según publica Daniel Marín en Eureka, que la nasa ha aprobado una misión para buscar asteroides potencialmente peligrosos (PHA) y NEAs. La NASA lanzará esta sonda al punto de Lagrange L1 y esperan detectar el 90% de los objetos de más de 140 metros.

Telescopio de infrarrojos NEOSM de la NASA
Telescopio Infrarrojo NEOSM. NASA

Esperemos que sea un éxito y tengamos nuestro entorno algo más controlado.

Ráfagas rápidas de radio ¿señales extraterrestres?

Según publicó el 9 de septiembre la agencia Xinhuanet, el Radio Telescopio de 500 metros de Apertura Esférica (FAST en inglés), captó en pocos días entre agosto y septiembre, más de 100 Ráfagas Rápidas de Radio. ¿Qué son y qué tienen de interesante?

Radio Telescopio de Apertura Esférica (FAST). XINHUANET

Las Ráfagas Rápidas de Radio o FRB en inglés, son un fenómeno astrofísico de gran energía que emite muy rápido en ondas de radio. Por ello se pueden detectar, aunque provengan de fuentes muy lejanas. El problema es que duran muy poco, del orden de milisegundos.

Las primeras señales FRB se detectaron en 2007 y su origen sigue siendo un misterio. Se encontraron mientras se analizaban datos de púlsares. Aunque son muy energéticas en origen, cuando alcanzan la tierra tiene la misma fuerza que la transmisión de un móvil desde la luna. Hasta ahora se habían registrado unas 100, por lo que su número total conocido debe rondar las 200.

El problema que tenemos, de entrada, es que se conocen casos aislados. Desde que se encontró la primera, se han dispuesto más medios para registrar otras, pero no tenemos datos como para generar una hipótesis consistente sobre qué las causa.

Lo que es seguro es que todas las ráfagas provienen de fuentes fuera de la galaxia. De todas las que se han registrado, tres provienen de fuentes repetitivas, lo que permitirá, estudiando más casos, consolidar alguna hipótesis de su origen.

Sin entrar en detalles sobre su duración e intensidad, es cierto que puede haber multitud de fuentes naturales que las generen, pero también existe la posibilidad de que sean de origen tecnológico, es decir, de una civilización extraterrestre.

Según publican The Astrophysical Journal Letters (ApJL) las ráfagas rápidas de radio podrían usarse para propulsar una vela de luz. ¿Qué es una vela de luz?

Unos de los impedimentos que tenemos para viajar a sitios lejanos es la velocidad que podemos alcanzar. Si queremos acelerar más tiempo, necesitamos más combustible y para tener mas combustible, necesitamos cohetes mas grandes que lo puedan llevar y a su vez más combustible para llevarlo… y, en cualquier caso, da igual lo grande que sea el cohete, el combustible se acabará y dejaremos de acelerar.

Vela Laser, en este caso (Breakthrough Starshot).

Si en lugar de combustible nos propulsamos con una vela, no necesitamos llevarlo con nosotros, además, en el espacio no hay rozamiento, asique un viento constante nos da una aceleración constante, por lo que en unos años, tendríamos objetos viajando a un cuarto de la velocidad de la luz.

Tenemos un gran problema, que en el espacio no hay viento, tal y como lo conocemos. Realmente si que hay un viento, el viento solar, que no son más que pequeñas partículas emitidas por el Sol. El problema es que este viento se debilita con la distancia, por lo que solo vale para impulsar una vela (como la de los barcos, pero de materiales mas molones y aspecto de papel de aluminio) y solo vale para alejarse del Sol.

No parece muy apropiada para salir del sistema solar, para eso tenemos otras velas que funcionan con la luz solar (idéntico problema) o con láseres proyectados desde la tierra. Esta solución es óptima, podemos generar el láser que queramos sin preocuparnos por el peso, ya que el equipo esta en tierra, apuntamos a la vela, disparamos y, ¡et voila!, empuje sin combustible.

Aunque te chirríe en la cabeza, se puede cambiar el láser, por una Ráfaga Rápida de Radio y, con un material adecuado, causa el mismo efecto.

Por supuesto no es lo mismo una luz que otra, ni una frecuencia que otra, y aquí viene lo inquietante, los parámetros de las Ráfagas Rápidas de Radio coinciden con los óptimos para propulsar una vela de luz… (¿o de radio?). Y el hecho de que sean rápidas y focalizadas refuerzan esta teoría.

Si quisiésemos impulsar una vela de luz, apuntaríamos el láser, máser o lo que sea, y dispararíamos a la vela, solo si fallamos, el haz seguiría hasta otro planeta (que esté en su misma línea), por eso no se detectarían demasiadas, ni serían de gran duración, no se gasta energía disparando a la nada…

Aunque es inquietante, es solo una teoría. Necesitamos más datos para saber de que se trata. Mi consejo, si miras al cielo esta noche (o de día, quien sabe) sonríe, quizá salgas en las fotos que un velero estelar está haciendo de camino a nosotros.

Evento en Peñascosa

Os dejamos las fotos del último evento realizado en Peñascosa, cerca de Alcaraz. Esta vez, no fuimos capaces de fotografiar nada nuevo, ya que nos centramos en objetos Messier muy débiles para la cámara. En compensación os dejamos otras imágenes del aquel día:

Cosmotour.es
Cosmotour.es
Cosmotour.es
En esta ocasión preparamos bien la velada, que se alargó hasta bien entrada la noche. (Cosmotour.es)
Cosmotour.es

La noche fue perfecta para la observación, ya que no había luna. Aunque pudimos observarla brévemente unos 20 minutos tras la puesta de Sol, cuando la luna, también se puso.

Esta foto no corresponde a esa noche, ya que luna se puso cuando aún clareaba, una noche perfecta para la observación. (Beatriz Medina Rodado)

Lo que si pudimos ver de la luna antes de que se pusiese fue algo como esto:

Foto realziada con cámara. (Beatriz Medina Rodado)

Es una pena no tener fotos, pero pudimos ver, entre otras maravillas, la nebulosa del anillo y la galaxia whirlpool. que no se llama así por los electrodomésticos, es la galaxia remolino.

¡Os esperamos en el próximo evento!

Choques entre satélites

La posibilidad de un choque entre dos satélites siempre está ahí. El espacio es muy, muy grande y caben muchos satélites. La posibilidad de choques es mínima, teniendo en cuenta que las orbitas están a alturas diferentes y no suelen cruzarse. Bueno, cruzar si, a diferente altura, más bien no suelen intersecar, es decir, se cortan en el mismo punto.

Aún así existen unas distancias de seguridad para evitar estas colisiones, que no solo acaban con los satélites siniestrados, si no que además llenan la orbita de pequeñas “balas” a 27000 km/h que además no tienen control y pueden producir otros accidentes en cadena.

Evitar esto es muy importante, más aún cuando se esta llenando la orbita de miles de satélites (como ya comentamos aquí). Cuando estos satélites acaban su vida útil o fallan, o se quedan sin combustible para maniobrar, quedan en su órbita hasta que caen, con suerte, o se quedan allí para siempre.

Satelite de la constalación Starlink de SpaceX
Satélite Starlink de SpaceX, al fonde se ve un «hermano de éste». (Spacenews.com)

Todo esto no es nuevo, pero lo que si es nuevo es que una agencia de la importancia de la Agencia Espacial Europea (ESA por sus siglas en inglés), tenga que maniobrar para esquivar un satélite, en este caso de la constalación StarLink de Space X, de la que ya hemos hablado un par de veces (aquí y aquí)

trayectoria de colisión satrlink SpaceX y aeolus ESA
Trayectorias y punto de aproximación de ambos satélites. (Spacenews.com)

Según hemos sabido por el portal Spacenews, la ESA ha publicado una serie de twits para comunicar que ha maniobrado un satélite para evitar una colisión. Aunque es muy de película, esto sucede más veces de los que nos creemos.

El afectado ha sido el satélite Aeolus, construido para la observación de la tierra con fines científicos, en especial atmosféricos. El otro artefacto involucrado es, según la ESA, el Starlink 44.

El incidente se ha dado a conocer el 3 de septiembre, aunque el aviso llegó antes. Se puso en conocimiento de SpaceX y ante el aumento de la probabilidad de colisión hasta el umbral de decisión, se decidió hacer la maniobra.

Aunque según citan, la probabilidad de colisión era de 1 entre 50000 en el momento del aviso, esta aumentó hasta 1 entre 1000 y la seguridad es lo primero.

Ni la ESA ni SpaceX han dado más datos al respecto y no sabemos cuánto se han aproximado entre sí. Pero quien si puede darnos datos al respecto es SOCRATES, no el filósofo, si no la Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space (un acrónimo impecable). SOCRATES se dedica a monitorizar los que hay en espacio de modo civil. Seguramente las agencias espaciales tienen sus propios medios, pero este se puede consultar.

Al parecer, según esta web, el máximo acercamiento de ambos fue de 4 km a una velocidad de 14.4 km/s. Según esta web han existido acercamientos más “peliagudos” a tan solo 65 metros…

La constelación Starlink, o la parte que hay en órbita, ya ha alcanzado su altura de servicio, por lo que sus orbitas estarán mejor controladas. En los próximos meses SpaceX va a deorbitar un par de satélites para verificar el funcionamiento de sus motores.

La enseñanza de todo esto es que una alerta se ha tramitado mediante unos correos electrónicos y una maniobra, pero no existen protocolos de comunicación entre empresas y agencias para evitar estos choques y el tráfico de satélites va en aumento.

Cuidado, yo soy pro satélites, no me quejo, es bueno que prolifere la industria espacial, pero es cierto que falta una regulación internacional y una forma de comunicarse. Hay catálogos diferentes para numerar los objetos en órbita, como ejemplos, el USA 240, el COSMOS 1358 o el NORAD 13161. También hay lanzamientos secretos (que se pueden ver fácilmente) y cargas secundarias, es decir, un satélite que viaje junto a otro más grande o un satélite que lanza otro satélite tiempo después, intentando eludir a los aficionados que los detectan y describen sus orbitas.

Otro gran problema son las últimas etapas de los cohetes que se quedan en órbita… Teniendo en cuenta que el 90% de lo que “flota” ahí fuera, son residuos o satélites apagados, no hay a penas control sobre la mayoría de los artefactos peligrosos, y esta cifra irá en aumento.

Cuando recorres 42000 km cada 90 min, acercase a 4 km de otro satélite es mucho. Si pensamos que entre uno y tres vehículos espaciales pueden estar ocupados por astronautas al mismo tiempo en órbita, es un riesgo que no merece la pena tomar.

Mi consejo, esta vez para la comunidad internacional, es crear un punto SIG-SAT de satélites y pagar la tasa para su posterior recogida a cargo de una agencia o empresa privada que cobre por ello, el espacio es infinito, pero el espacio útil de la órbita no, y dentro de poco querremos usarlo como turistas, con algo de seguridad, claro.

Polo de inaccesibilidad y el humano más aislado de la historia

La semana pasada se cumplió el 50 aniversario del primer alunizaje y la primera vez que nuestra especie pisaba otro cuerpo celeste. Como ya está todo contado de mil maneras, voy a tocar el tema de refilón, me voy a desviar del hilo normal del blog y voy a mirar hacia la tierra.

Cuando Armstrong y Collins estaban en la Luna eran las dos únicas personas en la superficie, tenían un pequeño planeta para ellos solos, como el principito, pero hubo alguien que estuvo más aislado aún.

Dentro de nuestro propio planeta hay puntos de difícil acceso que el 20 de julio de 1969, cuando Armstrong pisó la luna, habían sido explorados pocos años antes o no lo serían hasta años después.

No me voy a remontar a viejos exploradores como Colón, Elcano, Cook… solo en el siglo XX hay hazañas para llenar blogs enteros, pero para centrarnos un poco voy a repasar los polos de inaccesibilidad y puntos extremos del mundo. Los primeros son los puntos más alejados del mar o de la tierra, los segundos son los puntos récord de altura o profundidad, por ejemplo.

El polo sur geográfico se encuentra a unos 800 km de la costa antártica.

El polo sur fue alcanzado el 14 de diciembre de 1911 por Roald Engelbregt Gravning Amundsen, 35 días antes que la expedición de Scott. Amundsen levantó su campamento justo en el polo, llamado Polheim. Decidió dejar allí una tienda de campaña con una carta en su interior, que daría testimonio de su logro en el caso de que el equipo no pudiese regresar a Framheim. Si embargo, éste no era el punto de más difícil acceso de la Antártida. Este hito recae sobre el polo de inaccesibilidad, que se sitúa en las coordenadas 82°58′S 54°40′E (más o menos, según quien lo haya medido). Se encuentra a unos 3.718 metros sobre el nivel del mar, y es el punto del continente antártico más alejado del océano en cualquier dirección, y por tanto el más difícil de alcanzar. No coincide con el polo sur geográfico, del que le separan 878 kilómetros.

El punto de inaccesibilidad de la Antártida fue alcanzado por Yevgeny Ivanovich Tolstikov, un explorador soviético que comandó la tercera expedición soviética a la Antártida. La expedición estaba compuesta de 445 hombres y se desarrolló entre noviembre de 1957 y comienzos de 1959. Tan solo un pequeño equipo de 18 hombres alcanzó el polo de inaccesibilidad el 14 de diciembre de 1958, en un convoy de tractores antárticos, estableciendo una estación científica temporal, la base Polyus Nedostupnosti (Base Polo de Inaccesibilidad).

El asteroide 3357 Tolstikov, descubierto por el checo Antonín Mrkos el 21 de marzo de 1984, lleva el apellido de Yevgeny en su honor.

En 1967 llegó la 12ª Expedición Antártica Soviética y allí colocaron un busto de Lenin orientado en dirección a Moscú.

Busto de Lenin en el polo sur de inaccesibilidad

La base y el busto en 1965 / foto Olav Orheim / Norwegian Polar Institute

El busto está sobre un pedestal de madera colocado en el techo de la cabaña. Cuando el Equipo N2i del explorador británico Henry Cookson llegó al Polo de Inaccesibilidad, el 19 de enero de 2007, se encontró que toda la base estaba enterrada bajo la nieve, de la cual solo sobresalía apenas metro y medio el busto de Lenin.

El busto en 2008 / foto Stein Tronstad / Norwegian Polar Institute. Busto lenin cubierto de nieve

La montaña más alta de la Tierra, el Everest, fue coronada a las 11:30 del 29 de mayo de 1953 por el neozelandés Edmund Percival Hillary y el nepalí Tenzing Norgay. Mucho se ha hablado de este momento, pero se consiguió tan solo 8 años antes de que Gagarin llegase al espacio. Cierto es que los buenos de Tenzing y Edmund no tenían ni al OKB-2 (la oficina responsable de desarrollar la nave Vostok-1) ni los medios del programa espacial, pero lo hicieron (y regresaron).

Curiosamente el Everest, no es punto más alejado del centro de la tierra como cabría esperar de la montaña más alta. Este récord recae sobre el Volcán Chimborazo, en Ecuador, a 6384,4 km del centro de la tierra (la cima del Everest está a 6382,3 km), ¡2,1 Km por encima! Como la tierra esta achatada por los polos existe una diferencia de 21 km de radio entre ecuador y polos, por eso el Chimborazo es el más alejado del centro, pero no el que más alto sobre el nivel del mar. La competencia del Chimborazo más que con el Everest es con un vecino, el Huascarán, en Perú, que es el segundo punto más alejado del centro de la Tierra. El Huascarán es más alto que el volcán ecuatoriano, pero al estar algo más lejos del ecuador, se sitúa unos 40 metros por debajo de su «rival» ecuatoriano en el ranking de lugares más distantes del centro terrestre. Hasta el siglo XIX se consideraba al Chimborazo como la más alta montaña del planeta lo que produjo intentos de escalada durante los siglos XVII y XVIII.

Esta hazaña la consiguió Edward Whymper con los primos Louis y Jean-Antoine Carrel en 1880. Edward repitió la gesta en el mismo año, junto con los ecuatorianos David Beltrán y Francisco Campaña, por otra ruta, para acallar a los que dudaban de que lo hubiese conseguido.

El 3 de agosto de 1958, a las 11.15, el «Nautilus» se convierte en el primer barco que navega bajo el hielo del casquete del Polo Norte, comandado por William Anderson y tripulado por 115 hombres. El Nautilus, que sería el primer submarino nuclear, navegó más de 1600 km bajo el hielo para poder llegar a este punto extremo del planeta. Los rusos repetirían la hazaña con el K-3 Leninski Komsomol, también nuclear. El K-181, también soviético, viajó al Polo Norte del 25 de septiembre al 4 de octubre de 1963. Emergió en el polo norte en la mañana del 29 de septiembre. Los submarinistas instalaron un mástil con las banderas de la URSS y la Marina de Guerra justo en el punto geográfico del Polo Norte. Al estar sobre el hielo, estas marcas no permanecieron mucho tiempo en el polo norte, ya que el hielo se va desplazando.

Para que la marca permaneciera en su sitio, el 2 de agosto de 2007 el batiscafo ruso Mir-1, tripulado por el jefe de la expedición y conocido explorador polar Artur Chilingárov, tuvo el honor de plantar la bandera de Rusia en las gélidas aguas del Ártico a 4.261 metros de profundidad. La bandera está hecha de titanio para resistir las condiciones del fondo del océano ártico.

La bandera de titanio y la pinza del batiscafo. AP Photo/Association of Russian Polar Explorers Bandera de Titanio en el polo norte

Antes de esto se llegó al punto más profundo del planeta, en la fosa de Las Marianas. La primera expedición a Challenger Deep fue realizada por la Armada de los Estados Unidos en 1960 (con el oficial Don Walsh al mando), alcanzando una profundidad de 10.912 metros. Su máxima profundidad conocida son 10.994 metros en el extremo sur de un pequeño valle en su fondo, conocido como abismo de Challenger. Sin embargo, algunas mediciones llevan su punto más profundo hasta los 11 034 metros

Sin embargo, el punto más cercano al centro de la tierra probablemente sea el fondo del océano Ártico, en las cercanías del Polo Norte, a 6353 km (la Fosa de las Marianas, en comparación, está a 6366,4 km, unos 13 km más lejos. Aunque la fosa de las marianas tiene más agua encima, pasa lo que con el Everest, la forma achatada de la tierra le quita el puesto de lugar más cercano al centro de la Tierra a la fosa, en favor del lecho marino del polo norte.

Un año después de llegar al fondo de Las Marianas, el piloto militar Yuri Gagarin, se convertiría en la primera persona en alcanzar el espacio el 12 de abril de 1961. Aquí es donde empezamos a hilar con el título de la entrada. No sé si Gagarin se convertiría en el humano más aislado. Con un vuelo a 327 km de altura máxima, quizá sobrevoló zonas aisladas del planeta, como las que venimos comentando y momentáneamente se convirtió en la persona que más lejos había estado de otro ser humano. Recordemos que todas las llegadas a los puntos extremos que hemos comentado han sido en grupo (incluso la del batiscafo ruso, en el iban tres personas), pero nuestro amigo Yuri estaba solo. Su vuelo duró 118 minutos, pero la sensación tuvo que ser de inquietante soledad.

Después de todo esto, Armstrong llegó a la luna en 1969. No os cuento más, hay libros, películas, series… de todo. Aquí es donde nos encontramos el récord. Ya sabemos que los valientes Armstrong, Aldrin y Collins se alejaron de sus semejantes durante 3 días a casi 11 kilómetros por segundo. Llegar a 384400 km de distancia lleva su tiempo. Es cierto que llegados a este punto juegan en otra liga. No fueron los primeros en alejarse tanto, este honor corresponde a la tripulación del Apolo 8 que lo logró el 24 de diciembre de 1968 haciendo el mismo trayecto, pero esta es la hazaña que motiva esta entrada.

El Astronauta «Buzz» Aldrin, del Apollo 11, descendiendo la escalera del Módulo Lunar Eagle. La fotografía fue tomada el 20 de julio de 1969, por Neil Armstrong, quien, momentos antes, se había convertido en el primer ser humano en dar un paso en la Luna.

Y ahora es cuando llegamos al récord absoluto. La persona que más lejos ha estado nunca fue Al Worden, piloto del módulo de mando del Apolo 15 que entre el 30 de Julio y el 1 de agosto de 1971, mientras sus compañeros de misión hacían 3 excursiones por la Luna, él se quedó esperando en órbita durante 66 horas alcanzado una distancia de 3,597 km del humano más cercano, que eran sus dos compañeros en la luna. La ayuda más cercana que tenía el pobre Al estaba en la Tierra a 380.000 km de distancia. Para más claustrofobia, cuando pasaba por la cara oculta de la luna, el propio satélite impedía la comunicación con la tierra o con sus compañeros, que estaban en el lado visible.

Comunicarse con el lado oculto de la luna lo ha conseguido la Agencia espacial China en 2018 (47 años después) mediante el satélite Queqiao, que retransmite lo que le llega desde la cara oculta de la Luna a la Tierra.

Parece que después del Everest, la fosa de Las Marianas, el fondo del Ártico y la base Soviética del polo sur no nos quedaba nada, pero aún hay montañas que no se han escalado y otras que lo han sido bastante después de pisar la Luna. Por ejemplo, el Saser Kangri II, que se compone de dos picos (Occidente y Oriente) fue escalado por primera vez en 1984 (el Occidente) por un equipo indo-japonés, quienes en ese entonces, creían que el pico era más alto que el Saser Kangri II Oriente, y sólo posteriormente se determinó que el pico era más bajo que el Saser Kangri II Occidente, que tiene 7.518 metros de altitud. El Saser Kangri II Oriente fue escalado por primera vez por Mark Richey, Steve Swenson y Freddier Wilkinson el 24 de agosto de 2011, 42 años después del alunizaje.


Saser Kangri: Vyacheslav Argenberg

Si nos vamos a los más profundo, la cueva de Voronia, es la cueva más profunda (explorada a día de hoy). Se comenzó a explorar en 1960 hasta los 180 metros, un año antes de la proeza de Gagarin. El récord de profundidad establecido en el 2001 fue 1710 m, alcanzado por una expedición ruso-ucraniana. En el 2004 la exploración de la profundidad se incrementó con tres expediciones, cruzando la expedición ucraniana la marca de -2000 m por primera vez en la historia de la espeleología. En octubre de 2005, el equipo CAVEX se encontró una zona inexplorada, con más profundidad, confirmando que la profundidad de la cueva estaba, por entonces, establecida en 2140 m de profundidad, con una variación de ±9 m. En estos -2140 m comienza la zona inundada, pero en 2010-2012 se estableció un nuevo récord de bajada en los -2191 m. En 2013, Jesús Calleja, intento el descenso quedando en la cota -2080 m. De conseguirlo, habría sido la primera persona en estar en lo más alto y en lo más profundo (en tierra) del planeta.

53 años después del alunizaje, aún se exploran rincones de nuestro planeta. Es más, el pico Gangkhar Puensum en Bután con una altitud 7570 metros es la montaña más alta del mundo que nunca ha sido escalada. Y no tan altas, pero quedan más.

No sabemos mucho de la geografía de Ganimedes, Titán o Europa, poco más de las fotos que tenemos de sus superficies. Las curiosidades y la exploración de estas lunas promete ser muy interesante, como lo ha sido la de nuestro planeta.

Mi consejo, date prisa si quieres ser el primero en escalar alguna montaña o navegar algún rio indómito, o tendrás que buscar los nuevos polos de inaccesibilidad y lugares aislados en la Luna o en Marte.

Si quieres subscribirte a nuestro newsletter pincha aqui